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Abstract—Some basic mathematical apparatus is considered for the electric prospecting by the
method of electromagnetic field formation in the Earth. The Tikhonov method of solution is analyzed
in detail.
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The field formation method uses the response of a geoelectric medium to the modification of the source
activity. The most practical implementation of this principle is a complete detachment of the source and
the subsequent registration of the response. The next question that may arise in choosing a certain
technique is the selection of the manner in which the source will impact the medium. Even at the most
superficial glance, it seems that the medium will react rather differently to the direct current from the
ground and to the excitation with the help of inductive connection with the current loop. This issue is
closely connected with the existence of an electromagnetic field in a stratified medium represented as the
superposition of two components of different polarization (H-field and E-field, H-mode and E-mode,
TE-field and TM-field, and so on). These components correspond to the transition processes of two
kinds; the contribution of each of them into the resulting field depends on different properties of the
extraneous current (source). Our task will be to show, in the clearest way, the connection between the
configuration of the extraneous current and the type of the excited field; and, on a strictly formal basis,
distinguish the part of the total inductive electromagnetic process that is excited inductively; that is, the
part related to the impulse inductive sounding.

1. GENERAL SOLUTION TO THE PROBLEM OF INDUCTIVE SOUNDING

The leading theme of the suggested approach is a clear separation of the field of an arbitrary
exciter into two, practically independent phases (though we restrict ourselves here to an arbitrary
two-dimensional horizontal distribution of the extraneous current). Needless to say, the fact itself has
been known for a long time. We can refer to the papers by V. I. Dmitriev [1], L. A. Tabarovskii [2],
L. L. Van’yan [3], and J. R. Wait [4]. Clarifying the approach, we say that an ungrounded loop is
a purely inductive source exciting only a TE-field (transverse electric field) in a stratified Earth; a so-
called circular electric dipole (CED [5, 6]) is a purely galvanic source exciting a TM-field (transverse
magnetic field); and, finally, a horizontal electric (grounded) dipole is a mixed source, which, in fact,
is composed of three sources, i.e., a current segment (an inductive source) and the two single-point
grounds (galvanic sources). These basic types of the sources are shown in Fig. 1.

Consider a one-dimensional piecewise-homogeneous geoelectric model shown in Fig. 1,a. The
whole variety of different energizing devices, situated on the daylight surface (z = z1 = 0) or any
other boundary (z = zi) and formed by the wire segments and grounds, can be formally described
by introducing the distribution of the surface density (in A/m) of the extraneous current changing
synchronously, i.e., jex(x, y)q(t). Note that the assumption about the synchronism of the current change
at each point of the distributed source may be physically incorrect when we consider the ultra-early
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SOFTWARE FOR THE INDUCTIVE IMPULSE ELECTRICAL PROSPECTING 101

Fig. 1. A model of the medium and three types of sources

times (and it is necessary to take into account the electrical induction current and the finite propagation
velocity). In each homogeneous layer (i = 0, 1, . . . , N ), we must solve the Maxwell system of equations:

rot H = σiE + εi
∂E
∂t

, (1)

rot E = −µi
∂H
∂t

, (2)

div E = 0, (3)

div H = 0. (4)

On the boundaries between the layers, the horizontal components of the field (Hx, Hy, Ex, Ey)
are continuous. On the boundary containing the extraneous surface current (suppose that it is the lth
boundary, for z = zl), some special conditions following from (1) must hold:

[Hx]|z=zl
= jex

y (x, y)q(t), [Hy]|z=zl
= −jex

x (x, y)q(t),

[Ex]|z=zl
= 0, [Ey]|z=zl

= 0.
(5)

From now on, [F ]|z=zi denotes the jump of F across the boundary z = zi. Note that while taking (5)
in this form, we disregard the influence of material carrier of the extraneous current as part of the
geoelectric medium.

Let us reduce the number of unknown functions in (1)–(5) by reducing the problem to finding the
vertical components of the field (this is a well-known stratagem (for example, see [2]). By (1)–(4), we
can obtain the following expressions of the horizontal components in terms of the vertical components:

∂Hy

∂x
− ∂Hx

∂y
= σiEz + εi

∂Ez

∂t
, (6)

∂Ey

∂x
− ∂Ex

∂y
= −µi

∂Hz

∂t
, (7)

∂Hx

∂x
+

∂Hy

∂y
= −∂Hz

∂z
, (8)

∂Ex

∂x
+

∂Ey

∂y
= −∂Ez

∂z
. (9)

We now formulate a problem for Ez and Hz. In each layer, they must satisfy

∆F = µiσi
∂F

∂t
+ µiεi

∂2F

∂t2
. (10)
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On the boundaries (z = zi, i = 1, 2, . . . , N ; the source is on the boundary z = zl), taking into account
(5)–(9), we have [

σEz + ε
∂Ez

∂t

]∣∣∣∣
z=zi

=

{
−div jexq(t), i = l,

0, i �= l,
(11)

[
∂Ez

∂z

]∣∣∣∣
z=zi

= 0, (12)

[µHz]|z=zi = 0, (13)
[
∂Hz

∂z

]∣∣∣∣
z=zi

=

{
−rotz jexq(t), i = l,

0, i �= l.
(14)

We must add to (10)–(14) the radiation conditions for Ez and Hz.
Note now we have already obtained an important result. The problem with an arbitrary planar

source was separated into two independent boundary value problems for scalar functions depending
in absolutely different ways on the given distribution of the extraneous current.

We will solve these problems by separation of the variables. Since the distribution jex(x, y) is still
arbitrary, we separate the variables on using the two-dimensional Fourier transform with respect to
coordinates x and y which is defined as follows:

f(x, y, z) =
1

(2π)2

∞∫
−∞

∞∫
−∞

f∗(ξ, η, z)eiξxeiηy dξdη, (15)

f∗(ξ, η, z) =

∞∫
−∞

∞∫
−∞

f(x, y, z)e−iξxe−iηy dxdy. (16)

In the axial symmetric case, when f depends only on r =
√

x2 + y2, the two double Fourier
transforms are equivalent to the two Hankel transforms:

f(r, z) =
1
2π

∞∫
0

f∗(λ, z)J0(λr)λdλ, (17)

f∗(λ, z) = 2π

∞∫
0

f(r, z)J0(λr)r dr, (18)

where λ =
√

ξ2 + η2.
It is easy that by defining

E∗
z (z, t, ξ, η) =

1
2σi

V (z, t, λ)D∗(ξ, η),

H∗
z (z, t, ξ, η) =

1
2λ

X(z, t, λ)R∗(ξ, η),
(19)

where

D∗ =

∞∫
−∞

∞∫
−∞

div jex(x, y)e−iξxe−iηy dxdy, (20)

R∗ =

∞∫
−∞

∞∫
−∞

rot zjex(x, y)e−iξxe−iηy dxdy, (21)
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we reduce the problem to finding the two functions X and V absolutely independent of one another and
the source configuration and satisfying the same equation in each homogeneous layer (i = 0, 1, . . . , N )

∂2F

∂z2
− λ2F = µiσi

∂F

∂t
+ µiεi

∂2F

∂t2
,

but different conditions on the boundaries (z = zi, i = 1, 2, . . . , N ):

[
µX

]
|z=zi = 0,

[
X ′

z

]∣∣
z=zi

=

{
−2λq(t), i = l,

0, i �= l,

[
V +

ε

σ

∂V

∂t

]∣∣∣∣
z=zi

=

{
−2q(t), i = l,

0, i �= l,

[
V ′

z/σ
]∣∣

z=zi
= 0,

X → 0, V → 0, |z| → ∞.

(22)

We will solve these boundary value problems later. Now, let us discuss a general form of the solution
(the Fourier image) for all components. Applying the Fourier transform to (6)–(9) and expressing the
images of the horizontal components in terms of the images of the vertical components, we infer in each
layer

H∗
x =

η̄

2

[
V +

εi

σi

∂V

∂t

]
D∗ +

ξ̄

2λ
∂X

∂z
R∗, (23)

H∗
y = − ξ̄

2

[
V +

εi

σi

∂V

∂t

]
D∗ +

η̄

2λ
∂X

∂z
R∗, (24)

H∗
z =

1
2λ

XR∗, (25)

E∗
x =

ξ̄

2σi

∂V

∂z
D∗ − η̄µi

2λ
∂X

∂t
R∗, (26)

E∗
y =

η̄

2σi

∂V

∂z
D∗ +

ξ̄µi

2λ
∂X

∂t
R∗, (27)

E∗
z =

1
2σi

V D∗, (28)

where ξ̄ = iξ/λ2, η̄ = iη/λ2, i = 0, 1, . . . , N . Thus, the time behavior of the field is described by the
two independent functions V and X of different types. In other words, the formation process for a field
from an arbitrary source is a superposition of two different processes. The contribution of each process
is determined by the coefficients D∗ and R∗; i.e., according to (20) and (21), by the configuration of
the source (extraneous current) with the help of the values of div jex(x, y) and rotzjex(x, y). Recalling
the physical meaning of divergence and rotor, it becomes clear that one component is determined by
the drains or, in our case, the current draining from (flowing in) the grounds (it is excited galvanically);
whereas the other component depends on the rotational component in the distribution of the extraneous
current (it is excited inductively). Using the above representation of the solution for an arbitrary source,
it is possible to purposefully change the source configuration so as to achieve the suppression of either
galvanic or inductive component. However, the suppression of the galvanic component of the process,
notably, the complete suppression (everywhere div jex(x, y) = 0), has been known for a long time and
has been used: namely, this is a nongrounded current loop.

Example 1. A current loop as an inductive source. Let us consider a special case; i.e., the
distribution of the extraneous current with the azimuth symmetry. There are also many possibilities
here, but we assume that, in the polar system of coordinates, there is only jex

ϕ (r), and, at that, jex
ϕ (r) =

Iδ(r − a). This means that a circular current loop (of radius a) is under consideration. Thus, in the
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cylindrical coordinate system, we have

div jex =
1
r

∂jex
ϕ

∂ϕ
= 0,

rotzjex =
1
r

∂(rjex
ϕ )

∂r
= I[δ(r − a)/r + δ′(r − a)].

Hence, D∗ = 0, and this source is purely inductive (we were suspecting this, of course).

As far as the function R∗ is concerned, we will obtain the following by using the azimuth symmetry
and moving from the Fourier transform (15), (16) to the Hankel transform (17), (18), and also recalling
the definition of the Dirac delta-function and its derivatives:

R∗ = 2πI

∞∫
0

[δ(r − a)/r + δ′(r − a)]J0(λr)r dr = 2πIλaJ1(λa). (29)

Accounting for (23)–(28), it is easy that the components Hr, Hz, and Eϕ are different from zero in
the cylindrical system of coordinates. For instance, Eϕ can be represented as

Eϕ(r, z, t) =
Mzµi

2πa

∞∫
0

J1(λr)J1(λa)
∂X(z, t, λ)

∂t
dλ, (30)

where Mz = Iπa2 is defined as the source moment. In theory, a loop is usually considered of an infinitely
small radius but with a finite moment; i.e., a vertical magnetic dipole. In this case,

J1(λa) � λa/2,

and (30) will assume the form

Eϕ(r, z, t) =
Mzµi

4π

∞∫
0

J1(λr)λ
∂X(z, t, λ)

∂t
dλ. (31)

Example 2. A grounded line as a mixed source. We now consider a classical source of the transient
electromagnetic field such as a grounded horizontal electric line or dipole. Take a short line with the
current I grounded at the points along the x axis at x = −dx0/2 and x = dx0/2. Thus, the extraneous
current has only the component jex

x , and, moreover,

jex
x (x, y) = Iδ(y)[U(x + dx0/2) − U(x − dx0/2)]

(U is the Heaviside function); whereas for the dipole with the moment Idx0 we have

jex
x (x, y) = Idx0δ(y)δ(x).

Then,

div jex = Idx0δ(y)δ′(x), (32)

rotzjex = −Idx0δ
′(y)δ(x). (33)

We further find that

D∗ = Idx0

∞∫
−∞

∞∫
−∞

δ(y)δ′(x)e−iξxe−iηy dxdy = Idx0iξ, (34)

R∗ = −Idx0iη. (35)
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Finally, by (23)–(28) and (15)–(18), we obtain the expressions for all components of the nonstationary
field of the horizontal electric dipole:

Hx = Idx0
∂2

∂x∂y
Ĥ

(
V

λ
+

εi

σi

V ′
t

λ
− X ′

z

λ2

)
,

Hy = − Idx0

[
∂2

∂x2
Ĥ

(
V

λ
+

εi

σi

V ′
t

λ

)
+

∂2

∂y2
Ĥ

(
X ′

z

λ2

)]
, Hz = Idx0

∂

∂y
Ĥ(X),

Ex = Idx0

[
∂2

∂x2
Ĥ

(
V ′

z

σiλ

)
+

∂2

∂y2
Ĥ

(
µiX

′
t

λ2

)]
,

Ey = Idx0
∂2

∂x∂y
Ĥ

(
V ′

z

σiλ
− µiX

′
t

λ2

)
, Ez = −Idx0

∂

∂x
Ĥ

(
λ

V

σi

)
,

(36)

where Ĥ is the integral operator

Ĥ(F ) =
1
4π

∞∫
0

J0(λr)F (λ) dλ,

whereas X and V are the solutions of the boundary value problems (22).
Thus, in this paper we will consider in detail the solutions only for a TE-polarized field which is

used in the impulse electric prospecting with the inductive excitation by a closed current loop or under
the excitation, for example, by an electric grounded line but with registration of the vertical magnetic
component (i.e., that part of the field which is excited inductively). In the theoretical aspect, we focus
attention on the solution and the properties of the boundary value problem (22) only for the function X.

2. TWO METHODS FOR SOLVING THE FIELD FORMATION PROBLEM

We solve the boundary value problem (22) by performing some further separation of the variables.
We will seek X as a superposition of the solutions of the form Z(z) exp (−αt), where Re α ≥ 0.
Define the function Z as Z(z) = Aζ(z) above the boundary with the extraneous current (z ≥ zl) and
as Z(z) = Bζ(z) below this boundary. The function ζ can be expressed in the ith layer in terms of its
own (interior) values on the lower or upper boundary of the layer. Putting ζi = ζ(zi) and ζ ′i = ζ ′z(zi) for
i = 1, 2, . . . , N , we have in each layer (zi ≥ z ≥ zi+1)

ζ(z) = ζ1 exp (−u0z), z ≥ 0 (in the air),

ζ(z) = ζi ch[ui(z − zi)] +
ζ ′i
ui

sh[ui(z − zi)]
(37)

or

ζ(z) = ζi+1 ch[ui(z − zi+1)] +
ζ ′i+1

ui
sh[ui(z − zi+1)],

ζ(z) = ζN exp [uN (z − zN )], z ≤ zN .

Here u2
i = λ2 + k2

i , where k2
i = −αµiσi + α2µiεi and i = 0, 1, . . . , N . The functions

f = µζ, h = ζ ′z/λ

are continuous across the simple boundary.
On this stage, the form of the parameter α needs to be specified. Usually, it is taken as iω, and X is

represented by the Fourier integral

X = F̂ (Z) ≡ 1
2π

∞∫
−∞

Z(z)e−iωt dω. (38)
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We find the function Z having the source on the lth boundary and determining the coefficients A and B,
while taking into account, by (22), the conditions on this boundary, which are now assigned to Z:

Z(z) =
2Q(ω)f̂l

f̌lĥl − f̂lȟl

ζ̌(z), z ≥ zl (over the source), (39)

Z(z) =
2Q(ω)f̌l

f̌lĥl − f̂lȟl

ζ̂(z), z ≤ zl (under the source). (40)

Here, the notation x̌ means that the function x is determined above the source successively from top to
bottom by (37), and, at that, the value on the upper side of the first boundary is arbitrary. Correspondingly,
x̂ signifies that x is determined from below from the lower side of the last boundary. The index indicates
that the value is taken on the corresponding boundary. The function Q(ω) is a transformant of the
function that describes the form of the exciting impulse; i.e, q(t) = F̂ (Q). For the instantaneous turning
on, we have, in particular, Q(ω) = 1/(−iω). If q(t) = exp(−iω0t) (i.e., Q(ω) = δ(ω − ω0)) then we
obtain a harmonic solution for the frequency ω0.

In fact, performing the separation of variables, we used, in a somewhat unusual order, the conven-
tional method of solving the field formation problem known as the frequency domain method. It was
proposed most soundly in [7]. The problems of numerical implementation of this algorithm have been
solved, but only in a quasistationary approximation. Considering the displacement current sharply
diminishes the possibility of numerical realization of the Fourier transform.

In the quasistationary approximation, we can suggest another method for solving the boundary value
problems (22), which was used for the first time by A. N. Tikhonov in [8]. If we disregard the displacement
currents and take the upper (air) and lower half-spaces to be insulating then the solution for X and V
in those regions has the form F (z) = C exp(−λ|z|); and the problems for X and V can be restricted with
respect to z (0 ≥ z ≥ zN ) by replacing the boundary conditions at z = 0 and z = zN with the closing
conditions. First, we solve the problem for a turning-off regime (for t = 0) by reducing it to a problem
with an initial condition. Instead of (22), we thus obtain the next problem for X which is the only one
of interest for us here:

X ′′
zz − λ2X = µσ

∂X

∂t
, zi > z > zi+1, i = 1, . . . , N − 1,

X ′
z + λ

µ1

µ0
X = 0, z = 0,

[µX] = 0,
[
X ′

z

]
= 0, z = z2, . . . , zN−1,

X ′
z − λ

µN−1

µN
X = 0, z = zN ,

X = X(λ, z), t = 0; X = 0, t = ∞,

(41)

where X(λ, z) is the solution for a constant current. Note that the initial condition for X is the
distribution (Fourier-image) of the magnetic field of a constant extraneous current.

In this case, the parameter α can assume a discrete set of real values αj ≥ 0, and the solution X is
represented as the Fourier series

X =
∞∑

j=0

Cjζj(z)Tj(t), (42)

where Tj(t) = exp (−αjt) for the instantaneous switching on. However, if the current in the source
changes as q(t) then

Tj(t) = −
t∫

−∞

q(τ)αj exp [−αj(t − τ)] dτ.
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We determine ζj(z) successively from top to bottom by setting ζ ′j1 = λ, taking (37) into account, and
satisfying the boundary conditions in (41). The condition on the lower boundary serves as an equation
to determine αj . In the case of a superconducting base, the condition on the lower boundary for X is
ζjN = 0. The coefficients Cj are determined from the initial conditions on X and the orthogonality of the
functions µ

√
σζj in the domain 0 ≥ z ≥ zN . It should be also noted that X(λ, z) satisfies the equation

F ′′
zz − λ2F = 0

and the same conditions on the boundaries as X. Thus,

Cj =
2λfj1

αj

N−1∑
i=1

Mjiµ2
i σi

, (43)

where in each layer we determine

Mji =

zi+1∫
zi

[ζj(z)]2 dz =
1

2u2
ji

[
di

(
ζ2
ji u

2
ji −

[
ζ ′ji

]2) +
(
ζji+1ζ

′
ji+1 − ζjiζ

′
ji

)]
,

and the continuous functions f are defined in (36), whereas di = zi − zi+1 is the thickness of the ith
layer (i = 1, 2, . . . , N − 1).

Note that uji =
√

λ2 − αjµiσi may assume imaginary values, in which case a real hyperbolic
solution (37) changes into a real trigonometric solution. The real arithmetic of this algorithm allows
us to implement some fairly rapid numerical tasks.

Thus, we have solved the boundary value problem for X. Here we have described, in a rather
concise form, a one-dimensional mathematical apparatus, with the help of which we can construct an
algorithm for calculating a transient field of an inductive source on the daylight surface (or on any other
boundary); and, furthermore, the calculation can be performed by two methods whose joint usage allows
us to organize some universal, reliable, and fast computational procedures (as it is implemented in the
PODBOR complex).

3. THE TIKHONOV SOLUTION

A solution of the stabilization problem by the two methods was briefly described above. This solution
is nonstandard in many details and even more so in their combination. Recall that the source was
taken into account as a boundary condition, the number of functions to determine was diminished
without introducing the potentials, and the solution was started with transition to a nonstationary
problem in a domain of spatial harmonics (the classical approach presupposes the introduction of some
vector-potentials for the point sources and transition to a frequency regime). Further, a one-dimensional
nonstationary problem was solved in a domain of spatial harmonics by the two methods of separation
of variables, and the Fourier integral as well as the Fourier series were obtained (in the quasistationary
approximation and under infinite or zero resistance of the base). However, abstracting from the details
and the order of application of the transformations, we should admit that the solutions obtained here
(though more convenient, compact, and general) correspond nevertheless to the two classical solutions
known as the solution in a frequency domain and the solution in a time domain. As it is known, these
two main approaches to the problem of field formation in a stratified medium were suggested almost
simultaneously by A. N. Tikhonov [8, 9] and S. M. Sheinman [7].

The Sheinman method leads to a double Fourier–Hankel integral. The algorithm used by Sheinman
has become the most widespread and developed both in Russia and abroad (for example, see [3, 4])
despite the difficulties in its numerical realization which are connected with the oscillating factors in the
Fourier and Hankel transforms. Indeed, this method is clear and natural; and the solution is universal
and includes, as an intermediate stage, the calculation of a usual frequency regime which is, in its own
right, a working regime of some electromagnetic methods. So, the difficulties of numerical realization
are overcome somehow, but only in the quasistationary approximation. The most significant numerical
realization of this approach in Russia is a code by L. A. Tabarovskii and V. P. Sokolov [10], where the
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spline interpolation was used in integration; and, abroad, there are the codes by W. L. Anderson, in which
he used his digital filters method [11–14].

However, the solution of the field formation problem in the form of a double Fourier–Hankel integral
has an additional shortcoming; namely, the asymptotic developments are difficult to obtain. Based on
this, it is fairly difficult to conduct the analysis of the singularities of formation of the fields from various
sources, especially, in the media with insulating bases.

The Tikhonov method was developed for some time by O. A. Skugarevskaya, P. P. Frolov, and
V. I. Dmitriev [15, 16], but this did not result in the creation of an efficient computational procedure for
a multilayer medium. This solution is almost completely unknown abroad (we can only refer to [17]) and
has been rarely applied in this country. It should be noted that the Tikhonov solution that we discuss here
is, by no means, the unique representation of the solution of the field formation problem in a time domain.
A. N. Tikhonov himself proposed another solution in [18] by the multiple reflections method which is
convenient at the early stage. A general approach in a time domain is to move to the one-dimensional
nonstationary or quasistationary problem in a domain of spatial harmonics. Therefore, this approach
is sometimes called the method of stabilizing spatial harmonics. This one-dimensional problem
can be solved by various means. In [19] it is solved by a finite-difference method. The authors of [20]
separated the variables t and z in the boundary value problem and reduced the latter to a Sturm problem
which they suggested to solve numerically as well. In particular, the Tikhonov approach itself consists
in solving a Sturm problem successively and analytically, obtaining and analyzing the equation for the
eigenfunctions, representing the solution as a series in eigenfunctions, and expressing the coefficients of
this representation analytically basing on the initial condition.

There is another possible approach to finding a solution in a time domain which is based on
approximation of the geoelectric model. For the magnetic mode excited by a current loop on the
daylight surface, we can describe a vertically-continuous, horizontally-stratified geoelectric medium by
a discrete set of the conducting planes with sufficient precision. The solution in this case possesses some
characteristics favorable for numerical calculations [21, 22].

Coming back to the original paper by A. N. Tikhonov [8], we note that a fairly specific case was
presented there of a two-layer medium which was not easy to generalize. However, we were able to
successfully use this method of solution as a very efficient tool for obtaining the asymptotic expressions
for the late stages of stabilization of the fields of various sources [23–25]. We also succeeded in the
numerical realization of a multilayer algorithm for computing the stabilization processes of electric and
magnetic types under excitation by various sources [5, 6, 26]. Anyway, the Tikhonov approach into which
development we invested much effort needs an up-to-date exposition.

Let us describe in detail the solution of the field formation problem by the method that was
suggested by A. N. Tikhonov in [8]. In the context of the present paper, it suffices to obtain the
solution for the magnetic water, which is what we will do using a current loop as the source. Con-
sider an arbitrary horizontally-stratified model (in which σ0, σ1, . . . , σN−1, σN are the conductivities,
µ0, µ1, . . . , µN−1, µN are the magnetic permeabilities, ε0, ε1, . . . , εN−1, εN are the dielectric permeabili-
ties, z1 = 0 > z2 > · · · > zN−1 > zN are the coordinates of the boundaries). On the boundary l (z = zl),
we put a horizontal current loop of radius a, whose current is changing according to the law Iq(t).

From (23)–(28) it is not difficult to see that, in the cylindrical system, the components Hr, Hz, and Eϕ

are different from zero and can be represented as

Hr(r, z, t) = −I

2

∞∫
0

J1(λr)aJ1(λa)
∂X(z, t, λ)

∂z
dλ,

Hz(r, z, t) =
I

2

∞∫
0

J0(λr)aJ1(λa)λX(z, t, λ) dλ, (44)

Eϕ(r, z, t) =
Iµ(z)

2

∞∫
0

J1(λr)aJ1(λa)
∂X(z, t, λ)

∂t
dλ.
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In the general case, we have the following boundary value problem for X:

∂2X

∂z2
− λ2X = µσ

∂X

∂t
+ µε

∂2X

∂t2
, zi > z > zi+1, i = 1, . . . , N − 1,

[µX] = 0,
[
X ′

z

]
= −2λq(t)∆(i − l), i = 1, . . . , N,

X → 0, |z| → ∞,

(45)

where ∆(i − l) = 1 for i = l and ∆(i − l) = 0 for i �= l.
As we have found out above, this problem can be solved by separation of variables and singling out

the variable t in the form exp(−iωt), where the continuous variable ω assumes a continuous spectrum
of values −∞ ≤ ω ≤ ∞, which leads us to a traditional solution of the stabilization problem known as
the solution in a frequency domain.

Right now, however, we are interested in the solution proposed by A. N. Tikhonov. To avoid details,
we consider the medium to be nonmagnetic (µ = µ0 everywhere, where µ0 is the vacuum magnetic
permeability).

The first step consists in restricting the problem with respect to z to the domain 0 ≥ z ≥ zN . To this
end, adopt the quasistationary approximation (ε = 0 everywhere) and assume the resistances of the
upper and lower half-spaces to be equal to infinity (σ0 = ∞ and σN = ∞). In these regions, the right-
hand side of the equation for X turns to zero, and the solution in the upper half-space is

X(z, t) = X(0, t) exp(−λz).

In the lower half-space, the solution is correspondingly

X(z, t) = X(zN , t) exp[λ(z − zN )].

Approaching the boundaries, we obtain at the limit on the boundaries

X ′
z(0, t) + λX(0, t) = 0, X ′

z(zN , t) − λX(zN , t) = 0.

However, these are the conditions on the outer sides of the boundaries of the domain 0 ≥ z ≥ zN . Taking
into account the boundary conditions for X in (45), we infer the conditions on the inner sides of the
boundaries of the domain:

X ′
z(0, t) + λX(0, t) = −2λq(t)∆(1 − l), X ′

z(zN , t) − λX(zN , t) = −2λq(t)∆(N − l).

Further, let us simplify the problem by considering a source regime such as switching off a constant
current at the moment t = 0 (i.e., q(t) = 1 − U(t), where U(t) is the Heaviside function). This allows
us to consider the stationary problem separately and use its solution as an initial condition for the
quasistationary case. Thus, we have the stationary problem with a source in the bounded domain
0 ≥ z ≥ zN :

X
′′
zz − λ2X = 0, zi > z > zi+1, i = 1, . . . , N − 1,

X
′
z + λX = −2λ∆(1 − l), z = z1 = 0,

[X ] = 0,
[
X

′
z

]
= −2λ∆(i − l), z = zi,

X
′
z − λX = −2λ∆(N − l), z = zN ,

(46)

and the quasistationary problem in the time domain t ≥ 0, but without a source:

X ′′
zz − λ2X = µ0σ

∂X

∂t
, zi > z > zi+1, i = 1, . . . , N − 1,

X ′
z + λX = 0, z = 0,

[X] = 0,
[
X ′

z

]
= 0, z = zi,

X ′
z − λX = 0, z = zN ,

X = X(λ, z), t = 0; X = 0, t = ∞.

(47)
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Separate the variables in the boundary value problem (47) in a rather obvious way as ζ(z) exp(−αt)
requiring α > 0. Then, for ζ(z), we arrive at a boundary value problem of the third kind of a Sturm type:

ζ ′′zz − (λ2 − µ0σα)ζ = 0, zi > z > zi+1, i = 1, . . . , N − 1, (48)

ζ ′z + λζ = 0, z = 0, (49)

[ζ] = 0,
[
ζ ′z

]
= 0, z = zi, (50)

ζ ′z − λζ = 0, z = zN , (51)

where the product µ0σ is a piecewise constant function of z. The problem (48)–(51) can be characterized
as a selfconjugate eigenvalue problem satisfying the Sturm oscillation theorem [27].

Thus, there are infinitely many eigenvalues, which are all real and can be arranged into a monotoni-
cally increasing unbounded sequence (α0 < α1 < · · · < αj < · · · ). Each eigenvalue has multiplicity 1;
thus, all eigenfunctions ζj(z), with the same eigenvalue αj , differ from each other just by a constant
nonzero factor. Each eigenfunction ζj(z) has exactly j zeroes in the open interval (z1, zN ). The
eigenfunctions satisfy the orthogonality condition

zN∫
z1

µ0σ(z)ζk(z)ζj(z) dz = 0 for k �= j. (52)

The authors of [20] preferred a finite-difference solution to (51)–(58); whereas here we propose a con-
tinuation of the analytical solution. Thus, on the ith layer, we have a general solution of (48) in the
form ζ(z) = Ai exp(uiz) + Bi exp(−uiz), where ui =

√
λ2 − µ0σiα. This can be represented differently

by expressing the coefficients Ai and Bi in terms of the values of the function and its derivatives at the
ith boundary:

ζ(z) = ζi ch
[
ui(z − zi)

]
+

ζ ′i
ui

sh[ui(z − zi)]. (53)

This representation provides us with a key for solving (48)–(51). Indeed, setting ζ1 = 1 at the
upper boundary, we have ζ ′1 = −λ from (49). Now, using (53) as a recursive formula for calculating
zi+1 from zi, ζi, and ζ ′i, we obtain an equation for the eigenvalues αj by means of the conditions on
the lower boundary (51). In the process of solving this equation, all ζi and ζ ′i for i = 2, . . . , N are
determined; for each eigenvalue, by (53), the eigenfunction ζj(z) is determined completely in the domain
z1 = 0 ≥ z ≥ zN . From now on, we use the index j to enumerate the eigenvalues and eigenfunctions;
and the index i, to enumerate the layers in the cross-section. Therefore, ζji is the value of the jth
eigenfunction at the ith boundary. We also put uji =

√
λ2 − µ0σiαj .

Now, we can represent the general solution of the quasistationary problem (47) as

X(z, t) =
∞∑

j=0

Cjζj(z) exp(−αjt), (54)

where the coefficients Cj can be found from the initial condition

X(z) =
∞∑

j=0

Cjζj(z). (55)

To determine Cj , we multiply (55) by µ0σζk(z) (k = 0, 1, . . . ) and integrate with respect to z from
zero to zN . It can be verified by differentiation that we have the following antiderivatives:∫

µ0σζjζk dz =
1

αk − αj

(
ζ ′jζk − ζjζ

′
k

)
,

∫
µ0σXζk dz =

1
αk

(
X

′
jζk − Xζ ′k

)
,

∫
µ0σζ2

j dz =
µ0σ

2uj

{
z
[
u2

jζ
2
i +

(
ζ ′j

)2] − ζ ′jζj

}
.
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Inserting the limits for each homogeneous layer, summing, and using the conditions of the boundary
value problems for X and ζj , we convince ourselves that the orthogonality relation holds also in the case
of a piecewise constant function σ(z); and we find for Cj that

Cj =

zN∫
0

µ0σXζjdz

zN∫
0

µ0σζ2
j dz

=
2λζjl

µ0αjMj
, (56)

where

Mj =
N−1∑
i=1

σi

2u2
ji

{
di

[
ζ2
jiu

2
ji −

(
ζ ′ji

)2] +
(
ζji+1ζ

′
ji+1 − ζjiζ

′
ji

)}
,

di = zi − zi+1 are the thickness of the layers; whereas, for ζji and ζ ′ji, we have, in view of the general
expression (53), the next recursive formulas:

ζji+1 = ζji ch(ujidi) −
ζ ′ji
uji

sh(ujidi),

ζ ′ji+1 = −ζjiuji sh(ujidi) + ζ ′ji ch(ujidi).
(57)

It should be noticed that uji may assume imaginary values; and, in this event, a real hyperbolic solution
transforms into a real trigonometric solution; i.e.,

ζji+1 = ζji cos(ujidi) −
ζ ′ji
uji

sin(ujidi),

ζ ′ji+1 = ζjiuji sin(ujidi) + ζ ′ji cos(ujidi),
(58)

where uji =
√

µ0σiαj − λ2 now.

Thus, the problem is solved. Let us emphasize that the above algorithm has been quite successfully
used already for more than ten years to calculate the stabilization curves in the PODBOR program
complex for the electric exploration data processing by the sounding method of formation in the near
zone (ZSB) in real time for the media with an arbitrary base, though the algorithm under consideration
is the most convenient for the calculation of the late stages of the process in the media with an insulating
base. The main difficulties of the numerical realization are connected with solving the transcendental
equation for eigenvalues. However, this problem (of initial approximation) becomes much easier just
because of the need to solve the equation for each node of integration in the integrals (44).
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