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Abstract

We analyze the results of a mathematical simulation of pulsed electromagnetic fields in geologic media with dipping near-vertical boundaries
as well as interpretations within approximating block models and a layered homogeneous conducting model. We consider the possibilities and
limitations of these approaches to the inversion of data from pulsed soundings of actual geologic media.
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Introduction and problem formulation

The theory of nonstationary soundings is based on analysis
of the spatial distribution of the electromagnetic field in
horizontally layered models for conducting nonmagnetic iso-
tropic geologic media. The most widespread ground unit
consists of several closed circuits (coils): one transmitter and
receivers.

When current within the circuit is switched off, ring eddy
current develops beneath the surface of the conducting
half-space, according to Faraday’s induction law. The electro-
magnetic field is formed by secondary eddy currents induced
in the conducting parts of the medium.

Eddy currents make up moving toroid structures, often
called “smoke rings.” Some time after the switch-off, the eddy
current toroid dips into the medium and its radius and
cross-section increase. In the conducting half-space, the toroid
center moves along a straight path inclined at ~28° to its
surface (Epov et al., 1994; Nabighian, 1979). If a horizontally
layered model is based on an insulator, its path levels out and
it begins to move horizontally with time (so-called S zone).
In this case, the electric field does not cross the inner
boundaries, at which conductivity changes in a saltatory
manner. 

The described process degenerate in terms of the generation
of the secondary electromagnetic field, because sources of the
second type (charges) do not participate therein. They appear
in the medium in the presence of nonhorizontal boundaries.
The eddy electric field crosses the inner boundaries, on whose
surface charges appear with a density proportional to the
average normal component of the electric field at the bound-
ary. The proportionality coefficient is called “the contrast
coefficient” and described by the simple expression

k12 = 
σ+ − σ−
σ+ + σ−

,

where σ+, σ− are the conductivities of the medium at both

sides of the boundary.
Importantly, the surface charges are confined to the

boundaries and can move only along them. On the other hand,
the eddy current toroid moves within the entire half-space over
time. In this case, the eddy currents and surface charges
interact, especially if there are several dipping  boundaries in
the medium. The conventional division of the field into two
modes—induction (eddy currents) and galvanic (charges)—
loses its physical meaning and cannot be used to the full when
the behavior of the nonstationary electromagnetic field is
analyzed. 

Present-day systems of 3D inversion are usually based on
a class of models consisting of a set of conducting areas, which
are separated by a system of horizontal and vertical bounda-
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ries. Such a description of the medium leaves open the
question of measured-signal inversion in widespread cases,
when dipping boundaries are present. How adequate the
approximation of the dipping boundary by a set of horizontal
and vertical planes is, remains unclear. If their number is large,
it is evident from physical considerations that the values of
nonstationary electromagnetic fields in these two models will
approach one another. If the number of the approximating
horizontal and vertical plane boundaries is small, the distribu-
tion of surface charges at the dipping boundary will differ
considerably. It is continuous at the dipping boundary, and the
density at the horizontal boundaries will change in a saltatory
manner.

Forward mathematical modeling is used in this study to
assess the possibility of describing dipping boundaries by
simpler models with horizontal and vertical boundaries.

For simplicity, we consider a model with one dipping (40º)
plane separating two areas of different conductivities. It will
be approximated by a stepwise set of vertical and horizontal
surfaces. The number and sizes of the steps necessary for the
approximation of the dipping boundary will be defined so that
the nonstationary fields on the surface of the half-space will
differ by no more than 1–3%. The behavior of the nonstation-
ary electromagnetic field will be analyzed in more complicated
models with several dipping boundaries. Finally, the conse-
quences of model inconsistency in the inversion of such
signals within horizontally layered models will be considered.

Models for the medium and sounding unit

The model is a parallelepiped measuring 3 × 3 × 4 km and
divided into two subareas: almost nonconducting (air) and
conducting (ground), each 2 km high. We presume that the
medium is nonmagnetic and nonpolarizing (µ = µ0 = 4π ×
107 H/m, ε = ε0 = 8.854 × 10−12 F/m). The air resistivity is
taken equal to 106 Ohm⋅m. The sounding unit, located on the
surface of the conducting medium, consists of coaxial square
coils (transmitter, 100 × 100 m; receiver, 25 × 25 m).

Cartesian coordinates xyz are introduced. Their origin
coincides with the center of the transmitter coil. The day
surface is described by the equation z = 0. The inner bounda-
ries are tilted with respect to the day surface. The tilt angles
of the boundaries on the vertical plane x0z will be designated
by θ.

Model 1 (Fig 1a). The conducting area is divided by a
dipping plane crossing the day surface at a distance of 500 m
from the unit center at θ = 40º. The subarea to the right of
the dipping boundary has a resistivity of 200 Ohm⋅m, whereas
that to the left, 10 Ohm⋅m.

Models 2 and 3 (Fig. 1b, c) have the same structure but
different resistivities. Model 2 has two dipping boundaries.
The main boundary 1 is tilted at θ = 40° (as in model 1) and
perpendicular to the additional boundary 2. The intersection
of the dipping boundaries in model 3 is localized 500 m to
depth from the unit center. The depth of the intersection of
the dipping planes in model 4 is 100 m. The resistivities of

the subareas to the right and to the left of boundary 1 are 200
and 10 Ohm⋅m. The area bounded by the dipping planes in
models 2 and 3 might be conducting (resistivity 5 Ohm⋅m) or
nonconducting (resistivity 1000 Ohm⋅m).

Model 4 (Fig. 1d). The conducting area is divided into
layers by three horizontal boundaries (z = 250, 500, and
750 m). The dipping boundary crosses them at θ = 40º. The
upper layer (250 m thick) to the right of the dipping boundary
is characterized by two resistivity values: 5 and 1000 Ohm⋅m.
The second layer has a resistivity of 200 Ohm⋅m, and the
underlying layer, 10 Ohm⋅m.

The modeled signal is nonstationary electromotive force
(EMF) observed in the receiver coil after switching off the
generator. Recording time, up to 10 ms.

Mathematical simulation

As the studied model is essentially three-dimensional, the
simulation method should be selected with regard to the
dimensions and configuration of the sounding unit as well as
the structure of the area. The method should take into account
the influence of boundaries with very contrasting conductivi-
ties. The above requirements are fulfilled by the vector
finite-element method (VFEM). Tetrahedral elements are used
in the triangulation, because they permit “condensing” the grid
near the sounding unit (coil–coil) and/or other small elements
of the medium. The solution of the forward problem is the
EMF induced in the receiver circuit depending on time after
switching off the current pulse in the transmitter coil.

The electric field in the quasi-stationary approximation,
which appears in the medium after switching off the transmit-
ter current, is described by the corollary of Maxwell’s
equations

rot µ
−1 rot E + σ 

∂E
∂t

 = − 
∂J0

∂t
,

E × n
 

∂Ω = 0,  E
 


t = 0

 = 0, 

(1)

where E is the vector of the electric-field intensity; J0, vector
of the extrinsic-current density in the transmitter vs. time; µ,
magnetic permeability; σ, conductivity of the medium; and
∂Ω, outer boundaries.

Let us introduce the functional spaces in which the solution
of (1) will be searched for:

H (rot, Ω) = 

u ∈ L 2(Ω) | ∇ × u ∈ L 2(Ω)



, 

H0 (rot, Ω) = 


u ∈ H (rot, Ω) | u × n

 
|∂Ω = 0



. 

With the corresponding scalar product and norms,

(u, v)Ω = ∫ 
Ω

u ⋅ v dx,  ||u|| = √(u, u)Ω ,  

||u||H (rot, Ω)
2  = ||u||Ω

2  + ||∇ × u||Ω
2  .
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Let us carry out a variational formulation of the problem:

to find E ∈ H 0 (rot, Ω) × (0, T) for given J ∈ L 2(Ω) × (0, T),
so that ∀W ∈ H0 (rot, Ω) × (0, T) is fulfilled

(µ−1 rot E, rot W)Ω + σ 



∂E
∂t

, W 


 Ω

 =  

− 



∂J
∂t

, W 


 Ω

 − ∫ 
Ω

µ−1 (W × n) rot E dS. (2)

The finite-dimensional solution Eh, which satisfies (2), is
an expansion in basic functions associated with triangulation
elements:

E h (x, t) = ∑ 
i = 1

N

 ei (t) Wi (x), Wi ∈ H h (rot, Ω), 

where Wi indicates elements of the discrete subspace

H h (rot, Ω), defined as

H h (rot, Ω) = span 



W1, W2, ...,Wn




 ⊂ H0 (rot, Ω).

Since the simulation method is the VFEM, Nédélec’s vector
edge functions of the first order, associated with the edges of
the tetrahedral division (Nédélec, 1980), are selected to be the
Wi basic functions. The use of the edge basis permits
automatic fulfilment of the conditions of the continuity of the
electric-field tangential components at the boundaries directly
in the variational formulation (Nédélec, 1986).

At the outer boundaries of the simulation domain, the
electric-field tangential component is taken equal to zero:

E × n |∂Ω = 0 (Tamm, 1976). The size of the area is determined
from the distance between the outer boundary and the unit. It
should be no less than 15 sizes of the transmitter coil on the
horizontal plane, whereas the EMF attenuation should be no
less than 200 dB.

With regard to the expansion and boundary conditions, the
discrete analog of the variational formulation will take the
following form:

to find E h ∈ H h (rot, Ω) × (0, T) for J ∈ L 2(Ω) × (0, T), so
that the equation

(µ−1 rot E
 h, rot W

 h)Ω + σ 



∂E h

∂t
, W h 



 Ω

=  − 



∂J
∂t

, W h 


 Ω

is fulfilled for ∀Wh ∈ Hh(rot, Ω) × (0, T).
In matrix form, it looks like

A
 
e + σ C 

∂e
∂t

 = − 
∂F
∂t

,

where

[A] ij = ∫ 
Ω

µ−1 rot Wi ⋅ rot Wj dΩ,  i, j = 1, Ne,

[C] ij = ∫ 
Ω

Wi ⋅ Wj dΩ,  i, j = 1, Ne,

[F] i = ∫ 
Ω

J 0 ⋅ Wi dΩ,  i, j = 1, Ne,

Fig. 1. Geometry of the computational domains. a–d, See description in the text. 1–4, boundaries.
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A program modeling the nonstationary electromagnetic
field in an inhomogeneous conducting medium was developed
in C++ by the above algorithms (Epov et al., 2012).

Uniform piecewise constant approximation 
of the dipping plane boundary 

The equation for the dipping-boundary intersection with
any vertical plane, x = const, can be written as

z = −x tan θ + H or x = (H − z) cot θ, 

where H is the dipping-boundary depth beneath the transmit-
ter-coil center.

The dipping boundary reaches the surface (z = 0) and base
(z = zm) on the lines (at any y)

xL = H cot θ,  xm = xL + zm cot θ.

In Fig. 2, the dipping boundary is approximated on the
vertical plane by a set of vertical and horizontal segments.
The interval 


x = x1 = xL, x = x2N + 1 = xm



 is split into an even

number of 2N segments. The horizontal-segment depth within
the interval (x2k − 1,x2k + 1) equals the dipping-boundary depth
at the even-numbered point x2k: z2k = x2k cot θ.

For comparison, a set of models will be used with a number
of pairs of vertical and horizontal segments proportional to
the power of 2 (M = 2N = 4, 8, 16, 32, 64). The transient
process ε (t) in a model with a dipping boundary is selected
as a reference.

The lengths of the approximating segments are shown in
Table 1.

All the calculations of the EMF ε~ (t) for models with an
approximated boundary are compared with the EMF ε (t) in
the reference model.

Table 2 shows the maximum values of δ εN deviations in
the approximated models at different numbers of M expansions
with respect to ε (t) signals in the reference model. Changes
in the relative mistiming after switching off the transmitter
current are shown in Fig. 3. 

The approximation of the boundary with the minimum
number of expansions (M = 2, 4) causes considerable EMF
deviations from the reference model. With increasing number
of expansions, the relative differences are 11% (M = 8) and
4% (M = 16). At M = 32, the difference is no more than 1.4%.
In this case, the reference curve ε (t) can be regarded as
approximated with sufficient accuracy. Thus, the approxima-
tion of a dipping boundary by a set of stepwise boundaries
requires a detailed expansion, so that the thickness of the skin
layer is close to the length of the approximating segments.

Sources of the electromagnetic field

Three-dimensional numerical simulation of electromagnetic
fields by the VFEM yields a solution of the forward problem
in the entire computational domain. This makes it possible to
study the behavior of the electric-field intensity with time and
the behavior of the eddy current density and charges on the
surfaces of the contacts between areas of different conductivi-
ties.

In model 1, the dipping boundary separates two areas of
contrasting resistivities (by 20 times). The current toroid
begins to spread in the right subarea with a resistivity of
200 Ohm⋅m. The distribution of eddy currents till 70 µs is the
same as in a homogeneous half-space. By 70 µs, the current
toroid, consisting of eddy currents parallel to the day surface,
reaches the dipping boundary and a redistribution of the
currents begins in the medium.

The dipping plane is an interfragmental boundary between
two contrasting media at which the tangential components of
the fields and the normal components of the currents should
be continuous. The current toroid has two nonzero compo-
nents: Jx and Jy, oriented parallel to the 0x and 0y axes. The
electric-field intensity also has two components, because it is
related to current through Ohm’s law J = σE.

The normal component of the current density should be
continuous at the interfragmental boundaries. Correspond-
ingly, the normal component of the electric-field intensity
jumps proportionally to the conductivity ratio of the media.

Table 1. Parametrization of the stepwise model

Number of expansions Vertical segment, m Horizontal segment, m

2 840 100

4 420 500

8 210 250

16 105 125

32 52.5 62.5

64 26.25 31.25

Table 2. Maximum relative EMF deviation (%) for approximated models

Maximum relative EMF deviation 4 8 16 32 64

max (|| E − EN || / || E ||) 34 30 11 4 1.4

Fig. 2. Stepwise approximation of the dipping boundary.
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The continuity of the normal current component on the
inclined surface is ensured by the surface charges at the
boundary, which change the electric-field intensity and the
configuration of the currents in the medium. Near the dipping
boundary, a third component of the electric field Ez appears
under the effect of induced surface charges, which forms the

normal field component E n = E × n together with Ex. 
As the current toroid approaches the boundary, its isosur-

faces change their configuration. In a homogeneous medium,
all the current-density isosurfaces are toroids of different
thicknesses with a single center. As the electric field interacts
with the dipping plane, the current isosurfaces transform into
a structure combining a toroid and an isosurface localized on
the dipping-surface plane (Fig. 4). Within 0.1–0.2 ms, the
current values are redistributed between the toroid and the
isosurfaces on the boundary plane (Fig. 5).

By 0.70 ms, the currents in the right subarea (resistivity
200 Ohm⋅m) completely cross the boundary into an area with
a resistivity of 10 Ohm⋅m, forming a new system of currents
near the interfragmental boundary. The latter is asymmetric
and extends along the inclined plane. The peak currents are
concentrated in the upper part of the current bundle, and their
isosurfaces take on the shape of a crescent with ends down.
Isosurfaces with lower values but larger surface area are
closed, and their center is localized at a depth of 350–400 m.
The newly formed current bundle of the new configuration

spreads in the left subarea parallel to the dipping plane
(Fig. 6).

Model 2 (Fig. 1b) has two dipping boundaries (boundary 1
is the same as in model 1). The plane boundary 2 is
perpendicular to boundary 1. The subarea to the right of
boundary 1 will be called right. The part of the area limited
by boundaries 1 and 2 will be called middle, and the remaining
part of the medium to the left of boundaries 1 and 2 will be
called left. The resistivity contrast at boundary 2 equals 2
(resistivity of the middle area is 5 Ohm⋅m) or 100 (resistivity
of the middle area is 100 Ohm⋅m). The resistivity contrast at
boundary 1 is 20 to a depth of 500 m and 2 or 100 at depths
greater than 500 m, depending on the middle-area resistivity.

The current vortex begins to spread in model 2 similarly
to that in model 1, i.e., approaches boundary 1, interacts with
it, and changes its configuration during the transition to the
left subarea. The subsequent behavior of the currents depends
on the middle-area resistivity. If the middle area has a high
conductivity, the currents formed near the upper part of
boundary 1 partly flow into the middle area and spread
therein, predominantly stretching along boundary 1. In low-
resistivity areas (5 Ohm⋅m), the current distribution has a low
velocity, whereas the current-attenuation rate is high.

The maximum concentration of charges at boundary 1
(~2 mC/m2) as the current bundle passes from right to left
subarea. As the currents pass to the left subarea, the charges
tend to attenuate and spread downward on the boundary plane.

Fig. 3. Relative error of the EMF (V) of the form E (t) − E
~

 (t) 
/ E (t)  vs. time (s). E (t), EMF for a model with a dipping boundary; E

~
 (t), EMF curves for models

with a boundary approximated by 2N segments. 2N, cipher of the curves.
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A small number of charges at boundary 2 (~10 µC/m2) are
concentrated near the intersection of boundaries 1 and 2 within
0.1–0.7 ms. The currents in the middle area later attenuate and
move away from boundary 2, but the peak current approaches
the boundary from the left area and charges of ~3 µC/m2

spread to depths of 800–900 m.
When the middle area has a high resistivity (1000 Ohm⋅m),

the lower part of the current in the left area changes the
direction of its spread rather than penetrates the middle area.
The lower part of the current bundle moves to the left along
boundary 2. The peak current, concentrated in the upper part
of the current ring, expands in the left area toward the outer
boundary. The current isosurfaces in the middle of the
computational domain replicates the shape of boundaries 1 and
2, which limit the current.

The distribution of the induced charges at boundary 2 (two
opposite charge poles spread along the plane of boundary 2)
is typical of current–dipping plane interaction. Starting from
0.3 ms, the intersection of boundaries 1 and 2 is detectable at
boundary 1. The induced charges, concentrated above the
intersection, are partly compensated for by opposite charges
in a small neighboring area below the intersection of bounda-
ries 1 and 2.

Model 3 (Fig. 1c) differs from model 2 in the shallower
depth (dipping) of the intersection of boundaries 1 and 2
(100 m). However, this causes a dramatic change in the
behavior of the field and currents. Expanding at early times
(till 0.1 ms), the current bundle immediately appears at the
intersection of three media of different resistivities: the right
area with the peak current (200 Ohm⋅m), left area
(10 Ohm⋅m), and middle area (5 or 1000 Ohm⋅m).

If the middle area has a low resistivity, the currents select
the area with the lowest resistivity; i.e., the peak current
completely passes into the middle area. The shape of the
currents is similar to the current bundle in the left area in

model 1. The current bundle later expands in the middle area
between boundaries 1 and 2. The current, which is mainly
parallel to boundary 1, expands along and below the boundary.
The peak current is distorted as it closely approaches bound-
ary 2 and expands along and below the boundary.

The currents in the high-resistivity middle area show
opposite behavior. The peak current completely passes into
the left area and spreads only therein. The current bundle takes
on the angular shape of the left subarea, closely approaching
the inner boundaries 1 and 2 from the left. Induced charges
form at boundary 1 only to a depth of 100 m, i.e., in the area
with less contrasting resistivity. The charge distribution at
boundary 2 corresponds to a common distribution on a dipping
plane.

The dipping plane in model 4 crosses a layered medium of
complicated configuration (Fig. 1d). The resistivity contrast
along the dipping plane to a depth of 250 m is 40 times (5
and 200 Ohm⋅m) or five times (1000 and 200 Ohm⋅m). Within
250–500 m to the right and to the left of the dipping plane,
the resistivity is 200 Ohm⋅m, i.e., noncontrasting. The resis-
tivity contrast from 500 to 750 m below the day surface is 20
times (200 and 10 Ohm⋅m). Great depths show no contrast,
because the dipping plane passes within the underlying
homogeneous layer.

The current toroid expands very slowly in the conducting
upper layer (5 Ohm⋅m) with gradual attenuation. It interacts
with the dipping boundary only 3 ms after the current
switch-off. The left part of the current toroid bumps into the
dipping boundary, and the peak current is redistributed closer
to the boundary. The right part of the toroid spreads within
the conducting layer, gradually extending to the outer bounda-
ries of the area. Note the slight downward tendency of the
current toroid. The current bundle without a vertical compo-
nent neither produces charges at the horizontal boundary
between the first and second layers of the medium nor tries
to cross this boundary.

The current–dipping plane interaction produces two groups
of opposite charges above the intersection (250 m) of the
dipping plane and the horizontal boundary between the first

Fig. 5. Shape of several embedded current isosurfaces (30–50 µA) for model 1
near the dipping boundary at the moment 0.2 ms. 

Fig. 4. Shape of the maximum current isosurface for model 1 near the dipping
boundary at the moment 0.1 ms.
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and second layers of the medium (Fig. 7). The vertical current
component Jz, which replicates the shape of the induced
charges, appears in this part of the dipping boundary. As
compared with model 1, in which the right part of the current
toroid turned toward the dipping boundary and closed the
system of currents, the right part of the currents in model 4
completely attenuates without leaving the first layer. The
currents in the second layer fail to form a closed system over
the modeling period. The isosurfaces of the currents are
paraboloids flowing from the dipping plane, whose upper part
replicates the upper boundary of the second layer (combination
of the horizontal boundary and the upper part of the dipping
plane). This shape of the currents is due to the predominance
of two current components, Jx and Jz. The current component
Jy, tangent to the dipping plane, passes into the second layer
and attenuates therein at the penetration depth.

The distribution of the induced charges corresponds to that
of the contrasts along the dipping plane. The induced charges
accumulate above the intersection of the first horizontal
boundary with the dipping plane at a depth of 250 m. At late
times (more than 13 ms), the intersection of the dipping plane
with the second horizontal boundary (500 m) is slightly lit
from the bottom by the induced charges. The value of the
charges is ~0.3 µC/m2.

The current bundle for the high-resistivity first layer
spreads fast, so that the left part of the bundle touches the
dipping plane already at very early times (20–30 µs). The
current does not manage to attenuate and penetrates far
through the dipping boundary (~100 m). The shape of the
current resembles the left part of the current bundle, which is
located to the left of the boundary and bumps into it. Within
0.1–0.3 ms, the currents shift gradually down the dipping
plane with simultaneous attenuation of the horizontal part of
the currents, which replicate the shape of the initial toroid.
The subsequent behavior of the currents is similar, but the

absolute values of the current are higher owing to its fast
penetration into the area with a resistivity of 200 Ohm⋅m and
it spreads farther within the simulation area.

This is evident from the distribution of the induced charges.
The induction is carried out in two parts of the dipping plane:
at depths of 0–250 and 500–750 m. The charges are redistrib-
uted with time, first to a depth of 250 m, and then charges
appear and spread between the horizons z = –500 m and
z = –750 m (Fig. 8).

Inversion of the data obtained in the models 
with dipping boundaries

Transient EMF curves are mostly interpreted within layered
homogeneous models with plane-parallel boundaries, because
these models possess the best developed set of programs and
algorithms for quantitative inversion of the data. As pointed
out above, eddy currents serve as signal sources in this case,
whereas the part connected with charges does not exist. As
these sources are important in media with dipping boundaries,
inversion within a horizontally layered model will not yield a
realistic spatial distribution of resistivities because of consid-
erable inconsistency between the model data and the interpre-
tation technique. 

Transient EMF curves obtained on the profile intersecting
the dipping boundary at a right angle were used as the initial
data (model 1). The inversion was conducted in the TEM-IP
software (Antonov and Orlovskaya, 2010; Antonov et al.,
2010, 2011; Shein et al., 2012; Shtabel’ and Antonov, 2011).
Figure 9 shows a geoelectric section obtained from the
inversion of the model data calculated for the profile which
crosses the areas separated by the dipping boundary. Along
with considerable resistivity differences detected by 1D inver-

Fig. 6. Shape of several embedded current isosurfaces (0.3–0.5 µA) for model 1
at the moment 10 ms. 

Fig. 7. Shape of several embedded current isosurfaces (0.3–0.5 µA) for model 4
at the moment 5 ms.
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sion, we get a wrong idea of the localization of the dipping
boundary.

Conclusions

The studies show that, if near-vertical boundaries are
approximated by few rectangular blocks (fewer than ten), the
error in EMF curves obtained from the solution of a forward
problem is too high for these curves to be used in the solution
of an inverse problem. On the other hand, models constructed
with regard to the minimum deviation of EMF curves do not
correspond to the initial model for the medium. The applica-
tion of block structures in models used for solving inverse

problems is justified only with a large number of small blocks.
It is incorrect to select a model with blocks whose dimensions
are close to those of the coil and domain, because this selection
yields a model without any common points with the actual
section. The solution of inverse problems should be based on
that of a forward problem in areas with curved boundaries as
a 3D problem with regard to all the factors affecting the
electromagnetic field.

The study was supported by the Ministry of Education and
Science of the Russian Federation, Agreement no.
14.V37.21.0615 “Development and Application of Efficient
Programs and Algorithms for Modeling Nonstationary Elec-
tromagnetic Fields in Three-Dimensional Conducting and
Polarizing Geologic Media.”

Fig. 8. Distribution of the charges along the dipping plane at the moment 0.63 ms for model 4.

Fig. 9. Geoelectric section from inversion within a model for a horizontally layered medium.
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